Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
quicksort(nil) → nil
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
quicksort(nil) → nil
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

Q is empty.

The TRS is overlay and locally confluent. By [19] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
quicksort(nil) → nil
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

The set Q consists of the following terms:

minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))


Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y))
LOW(n, add(m, x)) → IF_LOW(le(m, n), n, add(m, x))
IF_LOW(false, n, add(m, x)) → LOW(n, x)
QUICKSORT(add(n, x)) → QUICKSORT(high(n, x))
QUICKSORT(add(n, x)) → HIGH(n, x)
HIGH(n, add(m, x)) → LE(m, n)
LE(s(x), s(y)) → LE(x, y)
LOW(n, add(m, x)) → LE(m, n)
QUICKSORT(add(n, x)) → APP(quicksort(low(n, x)), add(n, quicksort(high(n, x))))
QUOT(s(x), s(y)) → MINUS(x, y)
APP(add(n, x), y) → APP(x, y)
MINUS(s(x), s(y)) → MINUS(x, y)
IF_HIGH(false, n, add(m, x)) → HIGH(n, x)
HIGH(n, add(m, x)) → IF_HIGH(le(m, n), n, add(m, x))
IF_LOW(true, n, add(m, x)) → LOW(n, x)
IF_HIGH(true, n, add(m, x)) → HIGH(n, x)
QUICKSORT(add(n, x)) → QUICKSORT(low(n, x))
QUICKSORT(add(n, x)) → LOW(n, x)

The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
quicksort(nil) → nil
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

The set Q consists of the following terms:

minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y))
LOW(n, add(m, x)) → IF_LOW(le(m, n), n, add(m, x))
IF_LOW(false, n, add(m, x)) → LOW(n, x)
QUICKSORT(add(n, x)) → QUICKSORT(high(n, x))
QUICKSORT(add(n, x)) → HIGH(n, x)
HIGH(n, add(m, x)) → LE(m, n)
LE(s(x), s(y)) → LE(x, y)
LOW(n, add(m, x)) → LE(m, n)
QUICKSORT(add(n, x)) → APP(quicksort(low(n, x)), add(n, quicksort(high(n, x))))
QUOT(s(x), s(y)) → MINUS(x, y)
APP(add(n, x), y) → APP(x, y)
MINUS(s(x), s(y)) → MINUS(x, y)
IF_HIGH(false, n, add(m, x)) → HIGH(n, x)
HIGH(n, add(m, x)) → IF_HIGH(le(m, n), n, add(m, x))
IF_LOW(true, n, add(m, x)) → LOW(n, x)
IF_HIGH(true, n, add(m, x)) → HIGH(n, x)
QUICKSORT(add(n, x)) → QUICKSORT(low(n, x))
QUICKSORT(add(n, x)) → LOW(n, x)

The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
quicksort(nil) → nil
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

The set Q consists of the following terms:

minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 7 SCCs with 6 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(add(n, x), y) → APP(x, y)

The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
quicksort(nil) → nil
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

The set Q consists of the following terms:

minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(add(n, x), y) → APP(x, y)

R is empty.
The set Q consists of the following terms:

minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(add(n, x), y) → APP(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)

The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
quicksort(nil) → nil
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

The set Q consists of the following terms:

minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)

R is empty.
The set Q consists of the following terms:

minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

IF_HIGH(false, n, add(m, x)) → HIGH(n, x)
HIGH(n, add(m, x)) → IF_HIGH(le(m, n), n, add(m, x))
IF_HIGH(true, n, add(m, x)) → HIGH(n, x)

The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
quicksort(nil) → nil
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

The set Q consists of the following terms:

minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

IF_HIGH(false, n, add(m, x)) → HIGH(n, x)
HIGH(n, add(m, x)) → IF_HIGH(le(m, n), n, add(m, x))
IF_HIGH(true, n, add(m, x)) → HIGH(n, x)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)

The set Q consists of the following terms:

minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

IF_HIGH(false, n, add(m, x)) → HIGH(n, x)
HIGH(n, add(m, x)) → IF_HIGH(le(m, n), n, add(m, x))
IF_HIGH(true, n, add(m, x)) → HIGH(n, x)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LOW(n, add(m, x)) → IF_LOW(le(m, n), n, add(m, x))
IF_LOW(false, n, add(m, x)) → LOW(n, x)
IF_LOW(true, n, add(m, x)) → LOW(n, x)

The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
quicksort(nil) → nil
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

The set Q consists of the following terms:

minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LOW(n, add(m, x)) → IF_LOW(le(m, n), n, add(m, x))
IF_LOW(false, n, add(m, x)) → LOW(n, x)
IF_LOW(true, n, add(m, x)) → LOW(n, x)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)

The set Q consists of the following terms:

minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LOW(n, add(m, x)) → IF_LOW(le(m, n), n, add(m, x))
IF_LOW(false, n, add(m, x)) → LOW(n, x)
IF_LOW(true, n, add(m, x)) → LOW(n, x)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

QUICKSORT(add(n, x)) → QUICKSORT(high(n, x))
QUICKSORT(add(n, x)) → QUICKSORT(low(n, x))

The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
quicksort(nil) → nil
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

The set Q consists of the following terms:

minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

QUICKSORT(add(n, x)) → QUICKSORT(high(n, x))
QUICKSORT(add(n, x)) → QUICKSORT(low(n, x))

The TRS R consists of the following rules:

high(n, nil) → nil
if_high(true, n, add(m, x)) → high(n, x)
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if_high(false, n, add(m, x)) → add(m, high(n, x))
low(n, nil) → nil
if_low(false, n, add(m, x)) → low(n, x)
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))

The set Q consists of the following terms:

minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
quicksort(nil)
quicksort(add(x0, x1))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

QUICKSORT(add(n, x)) → QUICKSORT(high(n, x))
QUICKSORT(add(n, x)) → QUICKSORT(low(n, x))

The TRS R consists of the following rules:

high(n, nil) → nil
if_high(true, n, add(m, x)) → high(n, x)
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if_high(false, n, add(m, x)) → add(m, high(n, x))
low(n, nil) → nil
if_low(false, n, add(m, x)) → low(n, x)
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


QUICKSORT(add(n, x)) → QUICKSORT(high(n, x))
QUICKSORT(add(n, x)) → QUICKSORT(low(n, x))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(QUICKSORT(x1)) = x1   
POL(add(x1, x2)) = 1 + x2   
POL(false) = 0   
POL(high(x1, x2)) = x2   
POL(if_high(x1, x2, x3)) = x3   
POL(if_low(x1, x2, x3)) = x3   
POL(le(x1, x2)) = 1   
POL(low(x1, x2)) = x2   
POL(nil) = 1   
POL(s(x1)) = 0   
POL(true) = 0   

The following usable rules [17] were oriented:

if_low(false, n, add(m, x)) → low(n, x)
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
low(n, nil) → nil
if_high(false, n, add(m, x)) → add(m, high(n, x))
high(n, nil) → nil
if_high(true, n, add(m, x)) → high(n, x)
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

high(n, nil) → nil
if_high(true, n, add(m, x)) → high(n, x)
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if_high(false, n, add(m, x)) → add(m, high(n, x))
low(n, nil) → nil
if_low(false, n, add(m, x)) → low(n, x)
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), s(y)) → MINUS(x, y)

The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
quicksort(nil) → nil
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

The set Q consists of the following terms:

minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), s(y)) → MINUS(x, y)

R is empty.
The set Q consists of the following terms:

minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), s(y)) → MINUS(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y))

The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
quicksort(nil) → nil
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))

The set Q consists of the following terms:

minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y))

The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)

The set Q consists of the following terms:

minus(x0, 0)
minus(s(x0), s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

quot(0, s(x0))
quot(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
low(x0, nil)
low(x0, add(x1, x2))
if_low(true, x0, add(x1, x2))
if_low(false, x0, add(x1, x2))
high(x0, nil)
high(x0, add(x1, x2))
if_high(true, x0, add(x1, x2))
if_high(false, x0, add(x1, x2))
quicksort(nil)
quicksort(add(x0, x1))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y))

The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)

The set Q consists of the following terms:

minus(x0, 0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(QUOT(x1, x2)) = x1   
POL(minus(x1, x2)) = x1   
POL(s(x1)) = 1 + x1   

The following usable rules [17] were oriented:

minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)

The set Q consists of the following terms:

minus(x0, 0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.